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I )  I N T R O D U C T I O N  

General purpose centrally space differenced implicit finite difference codes in two' and three' dimen- 
sions have been developed at  NASA Ames and have been widely distributed since their introduction in 
1977 and 1978. These codes, now referred to ARC2D and ARC3D, can run either in inviscid or viscous 
mode for steady or unsteady flow. They use general coordinate systems and can be run on Bny smoothly 
varying curvilinear mesh, even a mesh that is quite skew. Because they use well ordered finite difference 
grids, the codes can take advant.age of vectorized computer processors and have been implemented for 
the Control Data 205 and the CRAY I-S and X-MP. On a single processor of the X-MP a vectorized 
version of the code runs approximately 20 times faster than the original code which was written for the 
Control Data 7600. 

Traditionally gains in Computational efficiency due to improved numerical algorithms have kept pace 
with gains due to increased computer power. Since the ARC2D and ARC3D codes were introduced, a 
variety of algorithmic changes have been individually tested and have been shown to improve overall 
computational efficiency. These include use of a spatially varying time step ( A t ) ,  use of a sequence of 
mesh refinements t o  establish approximate solutions, implementation of various ways to  reduce inversion 
work, improved numerical dissipation terms, and more implicit treatment of terms. Although the 
various individual algorithm improvements can interact with each other, sometimes adversely making 
optimization difficult: their combined effect has lead to an order of magnitude gain in computational 
efficiency for steady state applications. This is a gain equivalent to tha t  achieved with computer 
hardware. Unsteady flow calculations have also benefited from some of the above improvements. 

The purpose of this paper is to describe the above algorithm improvements and to access and 
quantify (as much as possible) their advantages and disadvantages. The improvements that  we consider 
are constrained to be relatively simple so that they do not unduly complicate our general purpose flow 
solvers. 

The main theme of this paper is to demonstrate that by using a series of established and simple 
procedures, we can maintain a single straightforward general purpose computer code that  is competitive 
with specialized codes. For example, the steady state convergence obtained with this code for inviscid 
Euler equations is competitive with codes that use multigrid, and much better than current viscous 
multigrid codes. Likewise the same code can be used for unsteady flow simulation, and only codes using 
similar algorithms are competitive with it for unsteady viscous flow simulation. 
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11) B A C K G R O U N D  

General purpose implicit, approximately factored, finite difference codes have been generated for 
solving the Euler or thin layer Kavier-Stokes equations in general coordinates. If t , q ,  and s denote the 
curvilinear independent variables, then these equations can be written as 

where 

@ =  J -  1 

A 

p =  J - 1  

with 

and r 0 1 

The metric terms are defined as 



with 
J-.' = z < ~ q z r  + z ~ Y < z + ~  + Z ~ Y ~ Z C  - zcY<zri - Z q Y E Z r  - zr~qzt  

w A noniterative approximate factorization implicit method adapted from Beam and Warming3 or 
Briley and McDonald4 is given for Eq.( 1) by 

J E  J F  JG where h = At and A ,  B,C,  and M are the Jacobian matrices, -, -, and g .  These Jacobian 
matrices are given in the Appendix. Note that M ,  contains derivatives in 0 Here 6,, 6,, and 6, are 
typically three point central difference approximations that are second-order accurate, so the factored 
left hand side operators form block tridiagonal matrices. The operators V and A are simple backward 
and forward differences. For the viscous terms, a midpoint operator & is used to maintain a compact 
three point second-order accurate central difference scheme. Fourth-order accurate central Pade differ- 
ence operators3 that  do not break down the left hand side tridiagonal structure have also been used. 
Often fourth-order space accuracy is obtained by only altering the RHS difference operators', and in 
this regard, pseudo-spectral operators5 have been used as well. In the original code  development'^' 
numerical dissipation terms denoted as D; and D, were added as 

D e  = <,AtJ-'[(VA): + (VA); + (VA)i ]J  ( 3 4  

v*py D , I ~  = t i ~ t ~ - ' ( ~ ~ ) E ~ ,  ~ ~ 1 ,  = r , ~ t ~ - ' ( ~ ~ ) , ~ ,  D,I ,  = r , ~ t ~ - l ( ~ ~ ) r ~  (3b) 
and 

The operators D ,  which are inserted into the respective implicit block operators, are central three point 
second-differences. The implicit numerical dissipation operators are included to stabilize the explicitly 
treated fourth-difference terms while at the same time keep the LHS factors block tridiagonal. As the 
D, work on AQ, accuracy is not impaired. 

The above equations have been presented in three-dimensional form and a two-dimensional form is 
easily obtained as a subset. 

In the basic ARC2D and ARC3D codes the boundary conditions were treated explicitly. This gives 
us a simpler more flexible code since all the boundary conditions are isolated from the implicit inversions. 
The user is responsible for the implementation of boundary condit.ions. In a later section we will discuss 
some specific boundary condition implementation and in particular boundary conditions employed for 
airfoil calculations. 

The above algorithm has been widely applied, and, as noted in the introduction, its structure lends 
itself to vectorized coding. Generally vectorized coding is obtained using an approach where strings of 
block tridiagonal matrices are inverted simultaneously. 

Because of the structure of the algorithm given by Eq.(2), the resultant computer codes are very 
modular and therefore easily changed. Programming for computer vectorization tends to  complicate 
these codes, but users have generally considered the computer codes to be relatively straightforward. 
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111) A L G O R I T H M  C H A N G E S  

A series of changes have been implemented into the algorithm to improve steady state efficiency and 
reduce inversion work. The algorithm changes are constrained so that they do not unduly complicate 
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the basic computer code - even if some loss of efficiency occurs. As a result, the same code can be used 

The changes implemented into the basic code which improve efficiency, stability and convergence 
for inviscid or viscous and steady or unsteady flow by using simple switches. 

'-' 

include: 
space varying At 
use of a mesh refinement sequence t o  establish an approximate solution 
reduction of the block tridiagonal matrix inversion work by using simpler matrices that maintain 
stability through similarity transformation 
combinations of dissipation operators that improve robustness without impairing accuracy 
more implicit treatment of dissipation terms. 
We are also concerned with improving the overall accuracy of the computational codes, and to  this 

end we have implemented 
a) better boundary condition procedures, such as characteristic conditions 
b) improved artificial dissipation operators which eliminate spatial oscillations, especially near shocks. 

Higher order accurate difference formulas in space, such as fourth-order accurate space operators 
and perturbation formsG which improve global accuracy and eliminate first-order errors have been 
implemented, but are not maintained in the basic codes. 

To help quantify t.hese improvements we shall often contrast their effects on the computation of 
inviscid Row around a NACA0012 airfoil a t  a free stream Mach number, M ,  = 0.8 and an  angle of 
attack, Q = 1.25". Figure. 1 shows t.he two-dimensional transonic airfoil computation using ARC2D 
with all the current improvements. The grid is an '0' mesh with 192 points around the airfoil and 
33 points in the near radial direction. Clustering is used a t  the leading and trailing edges and in the 
vicinity of the expected shocks on the upper and lower surface, see in Fig. l a .  The converged coefficient 
of pressure on the surface is shown in Fig. Ib,  Mach contours in Fig. IC, and pressure contours are 
shown in Fig. Id.  The convergence history showing the / 2  norm of the residual (RHS of Eq. (2) )  plotted 
against fine grid iterat,ion count is given in Fig. le,  and rapid convergence for lift is demonstrated in 
Fig. If. 

b w  

A )  SPACE VARYIKG At 

If only a steady state solution is required; one can let h (or At) change in space. This approach can 
be viewed as a way t,o condition the iteration matrix of the relaxation scheme defined via Eq.(2). Use 
of a space varying At can also be int,erpret:ed as an attempt to use a more uniform Courant number 
throughout the field. In any event: changing At can be effective for grid spacings that vary from very 
fine to  very coarse - a situation usually encountered in aerodynamic simulations where grids contain a 
wide variety of length scales. 

A space varying At. has been used in  bot,h explicit and implicit schemes ( e.g. Shang and Hankey7, 
McDonald and Briley', Shirnivasan et al', Coakley", Jameson''; etc ). As a rule one wishes to  adjust 
At a t  each point proportional t,o the grid spacing and the characteristic speed of the Row. Something 
like the Courant number restriction ( which for the Euler equations in multi-dimensions is a bit of an 
approximat.ion). 

Fur highly stret,ched grids the space variation of the grid is t,he most import.ant parameter to  scale 
with. In subsonic and transonic flow the characteristic speeds have moderate variation and we have 
found that a purely geometric variation of At is adequate, specifically 
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Figure 1. Inviscid NACA 0012 Airfoil Test Case, M, = 0.8 Showing Grid, Solution and Convergence 
History 
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To illustrate the advantage of using a variable time step, Fig. 2 shows the degradation in convergence 
rate when a constant shep size is substituted for the variable time step in the NACA 0012 test case. 
For this comparison all other parameters were held constant and no other changes were employed. We 
should note a t  this time that the above variation of time step has often worked poorly in viscous flow 
until the numerical dissipation terms were also put in more implicitly as described later. Also other 
forms of the variable step size sometimes perform better than Eq. (4.1), for example 

.-J 

~ 

which is approximately a constant CFL condition. However, Eq. (4.2) is more costly to  compute then 
Eq. (4.1). 

. . . -. . . VARIABLE At 
__ CONSTANT A t  

ITERATION 

Figure 2. Convergence Improvement Due to Variable Time Step 

B)  MESH SEQUENCES 

For inviscid airfoil calculations on a grid of O(250 x 50) practical convergence is usually obtained 
in 500-600 fine grid iterations when the flow field has been started from an initial condition of uniform 
free stream flow. Typically, the first 100 to 200 iterations on the fine mesh are needed to get past the 

6 *’ 



- initial transients which can be a substantial portion of the total solution time. For instance, in the 
above test case it takes on the order of 600 fine grid iterations for a tight convergence criteria (e.g. lift 
t o  5 decimal places) , 200 of which are spent on clearing out the impulsive start. One common way to 
acce1erat.e convergence to  a steady state is t o  obtain a good initial guess on the fine mesh by first solving 
or iterating on a sequence of coarsen grids and then iterpolating the solution up to the next refined grid. 
Such a mesh sequence procedure can often reduce the amount of time required to  obtain a solution to 
plotable accuracy by a factor of two. Also, because a coarse grid tends to damp high frequency waves, 
using a mesh sequence procedure can improve the overall robustness of the code. 

A mesh sequencing procedure has been implemented in an optionally called stand alone routine. If 
a sequence of m grids are used, a coarsened grid is cut from each previous grid by halving the number 
of points in the [-direction and by regenerating a new 7-distribution of points in t.he 1)-direction using 
a fewer number of points. The 1)-dist.ribution is regenerated because in viscous flows the spacing near 
the wall would be too coarsened if the halving procedure is used. A finite number of iterations (perhaps 
50) are carried out on each coarsened grid at which point the approximate solution is interpolated onto 
a more refined grid. The finest grid is then it.erated to convergence. The result is faster convergence to  
practical levels and a more robust starting procedure. 

For the NACA 0012 test case a sequence of 3 grids has been used; 48 by 18 and 96 by 25 and the final 
grid of 192 by 33 points. The convergence of Cl is shown in Fig. 3 to indicate the overall improvement 
in convergence due to  using mesh sequencing in comparison to using a fine grid only. Both cases were 
started with a free stream initial condition. 

C )  SIMPLIFIED INVERSION WORK 

The obvious measure of the computational expense of a algorithm is the total operation count per- 
formed on a working code. The operation count of the implicit approximately factored algorithm given 
by Eq.(2) for inviscid two-dimensional flow is about 1200 operations per point. Of this, approximately 
60 % is required for the left hand side factors. Each block 4 x 4 tridiagonal matrix requires 370 opera- 
tions per point. For viscous flow the percentage of time required for inversions ( i.e. solution time) is less 
because this cost remains fixed while calculation of viscous terms, the viscous Jacobians and turbulence 
model terms increase the overall operation count. For 3-D flow simulation a block tridiagonal solution 
requires 695 operations per point; and as there are three such factors, this means 2085 operations are 
needed per grid point. For inviscid flow, this  is about 70 - 80 % of the total count. 

For steady state applications, or wrhen first-order t,ime accuracy is adequate (many forced oscillation 
cases can be run first-order accurate in time), we can replace the  left hand side operators with simplified 
matrices tha t  maintain t h e  stability properties of the original matrices. Two approaches, both of which 
rely on similarity transforms, are available: diagonalization’*, and block r e d ~ c t i o n ’ ~ .  Both approaches 
give the correct, steady state solut.ion but are only first-order in time with the diagonalization method 
being nonconservative in time as well. Only the results using diagonalization are described here, see 
Ref. 13 for more details on the block reduction scheme. 

Starting with the two-dimensional form of Eq. (2) (without the dissipation or viscous terms) we 
have 

W 

.. 
The flux Jacobians A and 5 each have real eigenvalues and a complete set of eigenvectors. Therefore, 

the Jacobian matrices can be diagonalized, see Warming, Beam and HyettI4, 
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Figure 3. Improvement In Total Convergence of Lift Due to Mesh Sequencing 

with Tt the matrix whose columns are the eigenvectors of A and T ,  the corresponding eigenvector 
matrix for B.  They are written out in  the Appendix for both two- and three-dimensions. 

,-. 
.. 

Replacing the Jacobians Â  and with their eigensystem decompositions we have 

b, TF1 + h 6, (T( A t  T;')] [T, T;' + h 6, (T, A, T;')] AQ" = En. (5.3) 

At this point Eq. (5.2) and (5.3) are equivalent. A modified form of Eq. (5 .3)  can be obtained 
by factoring the T ,  and T, eigenvector matrices outside the spatial derivative terms 6, and 6,. The 
eigenvector matrices are functions of [ and q and therefore this modification reduces the time accuracy 
t o  a t  most first-order in time. The resulting equations are 

T ,  iI + h 6, A,] fi [ I  + h 6, A,]  T;-'AQ" = kn (5.4) 

where n' = T;'T,: see the Appendix. 
The explicit side of the diagonal algorithm (the steady-state finite difference equations) is exactly 

the  same as in the original algorithm, Eq. (5.2). The modifications are restricted t o  the implicit side and 
so if the  diagonal algorithm converges, t he  skady-state solution will be identical to  one obtained with 
the unmodified algorithm. In fact, linear stability analysis would show that the diagonal algorithm has 
exactly the same unconditional stability as the original algorithm. (This is because the linear stability 
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analysis assumes constant coefficients and diagonalizes the blocks to scalars, the diagonal algorithm then 
reduces to  the unmodified algorithm.) The modification (pulling the eigenvector matrices outside the 
spatial derivatives) of the implicit operator does affect the time accuracy of the algorithm. It reduces the 
scheme to at most first-order in time and also gives time accurate shock calculations a nonconservative 
feature, Le., errors in shock speeds and shock jumps. But, the steady-state solution is fully conservative 
because the steady-state equations are unmodified. Also; computational experiments have shown that 
the convergence and stability limits of the diagonal algorithm are essentially identical t o  that  of the 
unmodified algorithm. 

In two-dimensions the diagonal algorithm reduces the block tridiagonal inversion to 4 x 4 matrix 
multiplies and scalar tridiagonal inversions. The operation count associated with the implicit side of 
the full block algorithm in generalized coordinates is 410 multiplies, 356 adds, and 10 divides, a total 
of 776 operations, while the diagonal algorithm requires 233 multiplies, 125 adds, and 26 divides or 384 
operations. Adding in the explicit side and other overhead such as 1/0 (input/output) and initialization, 
the overall savings in computational work can be as high as 40%. 

In viscous calculations the diagonal algorithm can not be rigorously applied. The similarity trans- 
formations Tq and T,-' do not diagonalize the viscous Jacobian M and therefore the q direction implicit 
operator of Eq. (2) cannot be reduced to diagonal form. Two approaches are used to circumvent this 
difficulty. One approach is to diagonalize only the implicit operator and maintain the block operator 
in the 1) direction. This is not very desirable since the the reduction in computational work is lessened. 
The method which we actually employ in all our computations for steady viscous flow (and in convec- 
tion dominated unsteady flows) is t o  neglect the implicit viscous term in the q operator. The implicit 
artificial dissipation terms provide the stabilizing factor and to date all viscous computations using this 
approximation have not shown any stability restriction which can be attributed to this approximation. 

h 

The algorithm in three-dimensions has the form 

k d  Tt 11 + h6,  A(]  [ I  + h Sq A,] [ I  + h6, A,]  T;'AG" = 2" (5.5) 

.-. .-. 
with N = TF'T, and P = TC'T,, see Appendix. Details can be found in Reference 12. 

Compared to using the full block algorithm there are other significant advantages to the diagonal 
algorithm besides reduced computational work. One important aspect is that it simplifies coding for 
computer vectorization and requires less temporary storage then the block algorithm. Also, as we 
shall see below, the savings obtained with the diagonal form is much higher when the  fourth-difference 
numerical dissipation is implemented implicitly. 

D )  COMBINATION S M O O T H I N G  

In the original algorithm given by Eq.(2) the approach of adding a constant coefficient fourth- 
difference explicit dissipation can produce some problems which may only be evident on refined meshes. 
In particular, the use of the above type of fourth-difference dissipation with a refined mesh can produce 
severe oscillations near shocks. In Fig. 4, a fully converged solution is shown for the NACA 0012 airfoil 
case at M ,  = 0.8 and angle of attack, Q = 1.25deg. In this case the constant coefficient dissipation, Eq. 
(3b) was employed. A very fine grid is used in the vicinity of the  shock and high frequency oscillations 
appear there as indicated. Varying the coefficient of artificial dissipation over a wide range did not alter 
the nature of this oscillation. 

One can argue that  the type of solution shown in Fig. 4 is quite good. It is converged, and with 
post processing, an excellent. solution could be filtered out. In building a general purpose simulation 
code, however, this kind of approach is not usually practical. This is because for flows with strong 
shocks the oscillations can cause negative values of density with resulting numerical instability. Also, 
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Figure 4. Coefficient of Pressure Obtained Using Fourth-difference Constant Coefficient Dissipation. 

while we can sometimes converge inviscid Rows with such strong oscillations~ viscous flow simulations 
with numerically sensitive turbulence models can he unstable. Consequently, the numerical dissipation 
in t.he code has been modified to prevent such oscillations. 

A t  shocks we generally try to  locally drop the fourth-difference numerical dissipation to three point 
second-difference numerical dissipation. Three point second-difference numerical dissipation tend to  
average solut.ion values if enough of the term can be put in because the difference equations form a 
diagonally dominant. coefficient matrix. This can be easily seen for linearized equations because if a 
coefficient matrix is diagonally dominant this ensures that a solution value a t  a point cannot exceed the 
average of its neighbors. If a sufficient amount of second-difference terms can be put in, overshoots and 
undershoots are excluded. The problem is to  determine how much of t.he second-difference numerical 
dissipation should he put in to  eliminate overshoots, and, so as not to degrade overall accuracy, how to 
limit the application of such terms to  only strong shock regions. 

One way to obtain guidance as to  how much numerical dissipation should he put in can he obtained 
by looking a t  upwind flux split schemes. A 3-pt second-order accurate upwind first derivative approx- 
imation can he shown (c.f. Reference 1.5) to be equivalent a cent.ral difference plus an added central 
fourth-difference numerical dissipation (much like any real matrix can he decomposed into a skew- 
symmetric and a symmetric matrix). This gives us a way to estimate how much numerical dissipation 
can be included without degrading second-order accuracy. Likewise a first-order accurate upwind scheme 
is equivalent to  a central difference scheme plus second-difference numerical dissipation. A first-order 
accurat,e flux split scheme is essent.ially a monotone differencing (st,roug nonlinear effects can perhaps 
break down th is  statement). Insofar that  the first-order upwind flux split scheme can he rewritten as a 
three point central difference plus second-differences, one can back out the coefficient to  the dissipation 
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that  ensures monotonicity. Specifically we find 

1 

should be added to  6,E and so on for the other flux terms. Here IA/ has the usual definition of the 
absolute value of a matrix. Assuming A can be decomposed into its eigenvalues, \AI is formed from this 
decomposition where the eigenvalues A are replaced by iA1. Insofar that  iA/ is usually too complicated 
to  form, the spectral radius of A is often used in its place, although this can overdamp some modes. 

The second problem is how to  isolate the second-difference numerical dissipation to just the shock. 
With knowledge of the solution one can simply put such second-difference terms in over localized regions 
of the flow field. But generally a more automatic approach is needed and for the most part so called 
product smoothers have been used ( Baldwin and MacCormackIG). That is, the coefficient of the second- 
difference dissipation is taken as the absolute value of a normalized second-difference of a variable such 
as density or pressure. 

For example: 
iPit l ,k 2 P j , k  + P j - l , k j  

r j , k  = 
I P j i l , k  + 2 P 3 , k  + P j - i , k i  

where T is the coefficient t.o the second-difference dissipation at  the point j, k. As a rule this coefficient 
will only be large near a steep gradient region, such as a shock. Work with flux l i r n i t e r ~ ’ ~  and TVD 
schemes” is providing additional insight on how to localize the second-difference dissipation to shock 
regions. 

The second-order product smoother can be added to the fourth-difference numerical dissipation, 
either throughout or in localized regions. Alternately, as the fourth-difference term itself can cause 
oscillations when employed across the shock, one can to switch from a fourth-difference to a second- 
difference, (see Jameson, et.al.”. A nonlinear numerical dissipation model which works very well in 
general cases has the form 

with 

where typical values of the constank are ~2 = 1 / 4  and ~4 = 1/100 and f (T)  is some smooth function 
over the domain of interest. Similar terms are used in the 0 and 5 directions. The coefficient u j , k  is a 
spectral radius scaling and in two-dimensions is defined as 

u 3 . k =  ~ ~ ‘ / + a \ / = + i v i + a  F q 2 + q y  

which is a sum of the spectral radii of Â  and 6. 
The  first part of Eq. (7) is a second-difference dissipation with an  extra pressure gradient coefficient 

to increase its value near shocks. The second part is a fourth-difference where the logic to  compute 
switches it off when the  second-difference nonlinear coefficient is larger then the constant fourth- 

difference coefficient. This occurs right near a shock. This model is the current artificial dissipation 
model used in our implicit scheme. 

3.k 
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Figure 5 .  Coefficient of  Pressure Obtained Using Nonlinear Dissipation. 

W' 
The explicit dissipation model: Eq. (7 ) ;  is added to the right hand side of the algorithm in place of 

Eq. (3a). At this point, t,he original second-difference implicit constant coefficient dissipation is retained 
t o  stabilize the explicit terms. In Fig. 5 we show solutions for the flow problem of Fig. 4, using this 
explicit nonlinear artificial dissipation. The oscillations at the shock are eliminat.ed and a sharp shock is 
obtained. The results shown are fully converged 1.0 machine zero. The chosen values of the coefficients 
have, at least to date, been st.atic and are not changed from case to case. 

E )  IMPLICIT S M O O T H I N G  

If the numerical algorithm given by Eq.(2) were unfactored, ful ly  implicit in boundary condition 
and numerical dissipation treatment, then for At. ---t 00 it would essentially represent a Newton iterati1.e 
method and very few iterations would be needed to  achieve a steady state. Of course; leaving the left- 
hand-side operator of Eq.(2) unfactored would necessitate a very costly matrix solution process with 
very high storage requirements and so approximat,e factorization is used. As a rule though, the more 
implicit and unfactored the algorithm, the better the iterative convergence rate will be. 

Ideally the fourth-difference numerical dissipation operators should be treated implicitly. However, 
including this t.erm implicitly increases the band structure of each implicit operator t o  pentadiagonal 
and, although the outer bands are diagonal, their elimination significantly increases the inversion work 
and sLorage requirements. If the artificial dissipation terms are put in only explicitly ( c i  = 0), then 
stabilit,y is maintained only for small At. I t  is for this reason that the numerical dissipation terms Di 
are included implicitly. Because only second-difference terms are treated implicitly, the matrix band 
structure is not increased, but this is not a correct. implicit treatment of the artificial dissipation, and 
to  maintain unconditional stability, c x  must be great,er than 2 c e .  Generally for nonlinear problems 
c, = 2 . 5 ~ ~ .  While choice of c i  maintains stability, analysis of a model p r ~ b l e m ' ~  shows t,hat the 
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ERRATA for AIAA Paper 85-0360 

Recent Improvements in Efficiency, Accuracy, and Convergence 
for Implicit Approximate Factorization Algorithms 

Thomas H. Pulliam and Joseph L. Steger 

page 6, Figure 2 : Lables VARIABLE At and CONSTANT At are incorrect and should read 
s -  

VARIABLE At  
CONSTANT At I ------- I 

page 17, Figure 8 : Angle of attack for M ,  = 0.63 should be OL = 2.0' 

page 24, Table 3: Entry for Co in the second to  last row should be 0.0089 



convergence rate is adversely effected compared to a correct fully implicit treatment of the numerical 
dissipation. 

Although a fully implicit treatment of the fourth-difference numerical dissipation would significantly 
increase the computational work and storage requirements for inversion of the full block algorithm, the 
cost of pentadiagonal inversion is greatly reduced if the diagonal form of the algorithm is used. This is 
because only scalar pentadiagonals are needed for the diagonal form. In fact, the computational cost of 
solving pentadiagonals in the diagonal algorithm is even less than the original block tridiagonal system. 
The net effect is enhanced convergence and stability with a minimal increase in cost. 

Treating the fourth-difference numerical dissipation operators implicitly in the diagonal algorithm 
gives u s  the altered form 

T, jl+ h6,h, - hDi/,] fi [ I  + h6,A, - hDii,] p [ I  + h6,A, ~ hDil,]T;'AQn = Rn (8 )  

where the Di are redefined as 

Terms for Dil, and Dilc have a similar form. 
The effectiveness of treating the fourth-difference terms implicitly in the NACA 0012 test case is 

indicated by Fig. 6. Shown here are results using the explicit nonlinear dissipation, Eq. (7), with implicit 
second-difference constant coefficient dissipation and with the fully implicit treatment, Eq.(8). Full 
implicit. treatment of the numerical dissipation improves convergence and also improves the robustness 
of the code. In general, the practical stability limits of the codes are increased with implicit treatment 
of the dissipations. 

I V )  B O U N D A R Y  CONDITIONS 

Boundary conditions uniquely define the solution. Given the the same geometry and conditions 
at boundaries a wide variety of algorithms should all give a consistent set of results. This usually 
depends on the manner in which boundary conditions are implemented. This implementation takes two 
important forms: the physical conditions (for instance fixed total pressure at  an upstream boundary or 
tangency at an inviscid surface) and the numerical boundary conditions (including the extra conditions 
which may arise from numerics such as happens with central differencing and also the numerics involved 
in applying the physical conditions). I t  is important that the boundary conditions used in a computation 
be well defined and reported on in detail otherwise cross comparisons among different computations are 

A particular set of boundary conditions employed in airfoil computations are described below in 
detail. The geometry is mapped onto the computational rectangle such that all the boundary surfaces 
are edges of the rectangle, see Fig. 7 . This application is for a "C" mesh topology. In "0" mesh 
topologies the wake cut boundary is periodic and can be handled as such where periodic solvers are 
used in the implicit inversions. 

A .  BODY SURFACES 

W' 

' difficult t o  access. 

At a rigid body surface, tangency must be satisfied for inviscid flow and the no slip condition for 
viscous flow. In two-dimensions b?dy surfaces are usually mapped to q = constant coordinates. The 
normal component of velocity in terms of the curvilinear metrics is given by 
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Figure 6. Improvement in  Convergence Due to  Implicit Treatment of Nonlinear Dissipation Terms 

and the tangent.ia1 component is 
'Iv" - qz* j  __ v, = (9.2) 

Therefore, tangency is satisfied by V ,  = 0 (no flow through the body). The tangential velocity r/, is 
obt,ained a t  t,he body surface through linear extrapolation for inviscid cases and is set to zero for viscous 
cases. The Cartesian velocities are then formed from the inverse relat.ion between them and Eq. (9) 
where 

The extrapolation of Vt produces less error if the mesh lines are clustered to the body surface. The 
velocities of Eqs. (9.l), and (9.2) are scaled such that the metric variations are removed which decreases 
the errors in the extrapolations especially for nonorthogonal meshes. 

The pressure on the body surface is obtained from the normal momentum equation 

pjd,rlr I ua,q, 4- ~ d ~ ~ ~ l ~  pu(rlzut - q y u F )  = 



E 
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Figure 7. Topological Mapping of an Airfoil onto a ‘C” Mesh. 

A t  = 1 

- - , i r l  
t 

where n is the local normal t o  the body surface. Equation ( 1 1 )  is solved at the surface using central 
second-order accurate differences in E and one-sided first- or second-order accurate differences in 0 .  For 
steady uniform incoming flow free-stream stagnation enthalpy Ho is held constant along the body in 
inviscid flow. Using the equation for enthalpy H o  = ( e + p ) / p  and the computed velocities and pressure, 
a value of density is obtained at the body. Adiabatic or constant temperature walls are used for viscous 
and unsteady flows to obtain density a t  the surface. In either case, total energy e is decoded from the 
equation of state. 

B .  F R E E  SIIRFACES 

Stretched grids are usually used to place far field boundaries far away from body surfaces. When 
bow shocks and attached shocks are generated a t  a body surface care is taken to ensure that the shocks 
are sufficiently weak when they reach far field boundaries so that they are not reflected or a t  least. they 
reflect outside the flow domain. A nonreflective charact,eristic like boundary procedure is used at far 
field boundaries. 

For subsonic free stream locally one-dimensional Riemann invariants are used a t  the outer far field 
boundaries. The  locally one-dimensional Riemann invariants are given in terms of the normal velocity 
component as 

and 

The Riemann invariants R1, R2 are associated with the two characteristic velocities (locally one- 
dimensional) X1 = V,, - a and = V,, + a respectively. Two other equations are needed so that 
four unknowns (the four flow variables) can be calculated. We choose V, and S = In(p/p?) where S is 
entropy. A t  the far field boundaries shown in Fig. 7; the  normal n is directed away from the boundary. 
For subsonic inflow V,, < 0 and the characteristic velocity XI < 0, therefore the characteristic variable 
R, can be specified along with two other condit.ions. The Riemann invariant R,, V, and  S are all set 
to  free stream values. The other characteristic velocity X z  > 0 and Rz is extrapolated from the interior 
flow variables. On subsonic outflow V,, > 0 and X 2  > 0 while X1 < 0 so only R1 is fixed to  free stream 

R1 = Vm - 2a/(y  - 1) Rz = V,, + 2 a / ( 7  - 1) (12) 



and R z ,  V ,  and In(S) are extrapolated. Once these four variables are available a t  the boundary the four 
flow variables Q can be.obtained. For supersonic inflow boundaries all flow variables are specified and 

Along singularities or cuts in the geometry (such as the wake cut in a "C" mesh), averaging is used 
to  provide continuous flow variables. As ment.ioned above periodic conditions are used for "0" meshes. 

for supersonic outflow all variables are extrapolated. v 

C .  FAR FIELD CIRCULATION CORRECTION 
For lifting airfoils in subsonic free stream, circulation a t  the far field boundary is accounted for to  

first-order (following Salas, et. al.") by imposing a compressible potential vortex solution which is 
added as a perturbation to  the free stream quantities (u, = M ,  cos(u) and zr, = M, sin(.)). The 
perturbed far field boundary velocities are defined as 

/3r sin(0) 
2 ~ r  ( I  - M& sin2(0 - a)) 

U f  = u, t - (13.1) 

and 

(13.2) 

where the circulation r = iM,lCi. I is the chord length, Cl the coefficient of lift a t  the surface, M, 
the free stream Mach number; u the angle of attack, /3 = ,/- and r ,B  are polar coordinates t o  
t h e  point of application on the outer boundary relative to  an origin at the quarter chord point on the 
airfoil center line. A corrected speed of sound is also used which enforces constant free stream enthalpy 
at the boundarv where 

1 
H ,  - 2("; - zr;)) (13.3) 

W 

Equations (13) are used instead of free stream values in defining the fixed quantities for the far field 
charact.eristic boundary conditions to  be consistent with the surface lift,. 

Figure 8 shows the coefficient of lift Cl plott.ed against the inverse of the distance to the outer 
boundary for a NACA 0012 airfoil ai the transonic condition M ,  = 0.8: Q = 1.25deg and at subcrit- 
ical conditions M, = 0.63: Q = 2.0deg. In these cases the outer boundary varies for 4.5 chords to 96 
chords where outer mesh rings were eliminated from the 96 chord grid to produce the c u t  down meshes. 
This insures tha t  the grid spacing between the body and outer boundary is identical for all the cases. 
Without the far field vortex correction the lift of the subcritical case can vary by as much as 12 % as 
seen in Fig. 8 .  With the far field vortex logic the subcritical case now has virtually no variation with 
outer boundary distance. For the transonic case we see roughly a 1 - 2 % change which is quite good 
considering the strength of the shocks. The typical distance chosen for most cases presented here is 25 
chords. 

The vortex correctipn logic can be modified LO pr0duc.e boundary conditions which allow one to 
compute the angle of attack for a given lift. This is done by fixing the circulation r in Eq. (13) at 
its value for the given lift. An iterative procedure is used where the lift, computed at the surface is 
compared t o  the desired lift and then t,he initial angle of attack is modified by the formula 

A a  = -/3, (Ci(input) - Cl(cdcu la ted ) )  

with 8, a relaxation parameter on the order of 2 . Computations in  w-hich a specified lift resulted in an 
angle of attack were compared with fixed 01 solutions a t  the same Mach number and showed excellent 
agreement. This procedure has been verified in numerious numerical examples. 
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Figure 8. Effect on Lift of Varying Outer Boundary Distances With and Without Vortex Correction. 

V )  COMPARISONS 

The ARC codes and their derivatives have been applied to steady and unsteady airfoils, cascades, 
projectiles, inlets, base flow, blunt body problems, and various three-dimensional simulations about 
wings and bodies. To demonstrate the increased efficiency of the new algorithmic changes we will only 
look at two classes of flow ; steady transonic inviscid and viscous flow about a single element airfoil and 
steady flow about a 3-D ellipsoid at angle of attack. 

A )  AIRFOIL 

The grid used for the NACA 0012 test case is an “0” mesh topology with 192 points on the airfoil 
surface (running from the lower trailing edge around the nose to the upper trailing edge) and 33 point 
in the normal direction. The grid is clustered at  the leading and trailing edges, near the expected shock 
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locations on the upper and lower surfaces, and in the normal direction as shown in Fig. 9. 
Results obtained frDm ARCZD are shown in Fig. 10 in the form of coefficient of pressure, Mach 

contours, and pressure contours. These are identical to  the ones shown in Fig. I ,  but are repeated here 
t o  scale for comparison with results from Jameson’s multigrid Euler code FLO52R” as shown in Fig. 
11. This is an Euler code which uses a multist.age Runge-Kutta like algorithm with a multigrid scheme 
tc accelerate convergence. The code employs enthalpy damping, residual averaging and the nonlinear 
artificial dissipation model discussed previously. The two codes were run on the same machine, the 
CRAY XMP at, NASA Amcs, on the same meshes and a t  the same flow conditions. The comparison 
between the two codes is quite good; despite t h e  differences in the spatial discretion method. 

A number of convergence criteria have been chosen to  assess the efficiency and convergence rates 
of the codes. Computer times are chosen as the measure of relative speed. Since the two codes are 
run on the same machines and with the same meshes this is an adequate measure. Other measures 
such as operat.ion count, work or iteration count are usually programming dependent or susceptible to  
misinterpretation. The convergence criteria used here are: 

1. Coefficient of lift ( C L )  to  1% of converged value. 
2. Coefficient of lift ( C L )  to 1/2% of converged value. 
3. Coefficient of lift (C,) to  5 decimal places. 
4 .  Kumber of supersonic points to  converged value. 
5. Residual to  machine zero. 

\uJ 

on the Cray XMP.) 

The residual is the l 2  norm of the explicit or right hand side of Eq.(2). We use just the component 
from the continuity equat,ion: the other components behave similarly. For the above case on the 192 by 
33 mesh t h e  computer times (in CPC seconds) for the convergence criteria are given in Table 1. 

_______~__ 

-~ 

10.5 ! 

K O .  S.S. pts 1 17 i 36 
Machine zero 120 

_ _ ~  ~~ 

! 
31 

97 

__ 
5 1  __t--~ 

7 

’u’ 

Table 1. Convergence Data for 192 by 33 grid 

To investigate the effect of mesh refinenlent a grid of 248 by 49 points is employed as the second 
study. The mesh is refined more a t  the nose, tail and near t h e  shocks as shown in  Fig. 12. 

Computational results for ARC2D and FLO52R are shown in Figs. 13 and 14. In this case the 
shocks are sharper. The computed convergence data  for this case is contained in Table 2. In Figure 15, 
we show convergence history versus iteration for the two ARC2D results. 
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Figure 9. NACA0012 Grid Using 192 by 33 Grid Points. 
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The algorithm was applied to viscous flow as well. Two example cases are presented below. The 
cases are taken from the suggested problems of the 1980-81 AFOSR-HTTM-Stanford Conference on 
Complex Turbulent Flows2’ an RAE2822 airfoil at M ,  = 0.676, cy = 1.93deg, Re = 5.7 x loG and 

Result+ obtained from ARC2D for the first case are shown in Fig. 16. The grid used is a 248 by 51 
point “0’; mesh. An algebraic turbulence model (Baldwin and Lomax2*) was used and transition was 
fixed at  11% chord. Experimental data  due to Cook et. is used for comparison. We see a good 
comparison with experiment for pressure coefficient and some boundary layer quantities. 

The computed lift,  drag and moment are compared with other computations and the experiment in 
Table 3. Due to the uncertainty of the angle of attack correction all computors matched lift. We show 
here our computation for both the experimentally corrected angle of attack and the values when lift 
is matched using the procedure outline above. Also shown are results from computors at. the Stanford 
Conference and some recent results of MehtaZ4. The overall comparison with experiment and other 
computations is quite good. 

M ,  = 0.73, a = 2.79 and Re = 6.5 x 10’. ‘w/ 

I l a  
Experiment 1 2.40 

I Loads - RAE2822 Airfoil - A4- = 0.676. Rt : 5.7 x lo6 I 
C M  

.- 
C L  Cnp j C O ~  1 C D  

0.566 -7 ! 0.0085 -0.082 

1 I 

Corrected Exp. 1.93 0.566 j 0.0085 
0 . % ? 7 4 - 0 0 0 6 1  i 0.0094 
0.566 1 0.0027 I 0.0060 I 0.0087 

1 0.0036 1 0.0056 I 0.0092 
B e n t  1.93 0.576 i 0.0034 0.0053 I 0.089 

0.566 1 0.0032 0.0055 -0.0089 

~ 

Le Balleur (1981) 

Table 3. Forces for RAE2822 Viscous Calculation 

-0.082 
-0.087 
-0.082 
-0.080 
-0.081 
-0.081 

Results obtained for the second case are shown in Fig. 17. The grid used is a 248 by 51 point “0 ’  
mesh. The turbulence model was used and transition was fixed at  3% chord. We again see a good 
comparison with experiment for pressure coefficient and boundary layer quantities. 

The computed lift: drag and moment are compared with other comput,ations and the experiment in 
Table 4. Results from compuhors at the Stanford Conference2’ and results of MehtaZ4 are shown. Again 
lift, is matched using the procedure presented in Section IV-C. The overall comparison wit.h experiment 
and other computations is again quite good. The shock location on the upper surface compares well. 
In the present. computations a small region of separat,ed flow oc.curs at the base of the shock and near 
the trailing edge on the upper surface. Residual convergence history versus iteration for these cases are 
shown in Fig. 18. Table 5 shows the computed convergence criteria data. 
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Table 4. Forces for RAE2822 Viscous Calculation: 

10-4 

M, %deg Re 

- 0.676 1.93 5.6 X lo6 
0.730 2.79 6.5 X lo6 . . . . . . . . 

0 1000 2000 3004 40430 5000 
ITERATION 

Figure 18. Convergence History for RAE2822 Viscous Cases 
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-I" - -  - y  --- 
112% of CL 264 295 

Machine zero 1147 1203 

Table 5.  Convergence Data RAE2822 Viscous Cases. 

B )  ELLIPSOID 

Application of a number of the algorithmic changes into the three-dimensional code (ARC3D) has 
greatly improved its accuracy, efficiency, convergence and robustness. The code is highly vectorized, 
uses the diagonal algorithm, the nonlinear explicit and implicit artificial dissipation and the spatially 
varying time step. In the  original code developed in 1978' the convergence rate (reduction in residual 
per iteration ) for typical cases was on the order of 0.996, for the current algorithm it has been reduced 
to  approximately 0.986. The computation time for 27000 grid points has been reduced from about 400 
minutes for a converged case on the CDC760O to about 5 minutes on a CRAY-XMP. These numbers 
can be improved upois ince not all of the algorithmic-and coding modifications have been implemented. 

An ellipsoid a t  angle of attack has been selected as a three-dimensional test case. Figures 19 to 25 
illustrate solutions obtained for a 6.1 three-dimensional ellipsoid a t  M ,  = 0.74 and an angle of attack 
a = 25 degrees. The Reynolds number is 44 x loG and the flow is t.urbulent. A bilateral symmetry 
condition is used to  reduce the solution domain. The grid used employs 40 points along the  surface, 
in the streamwise direction, 21 points circumferentially from wrindward to leeward side, and 30 points 
in the radial direction. The surface definition is shown in  Fig. 19 and Fig. 20 shows some of the 
grid definition a t  the symmetry plane and surface. Various views showing three-dimensional particle 
paths (passive particles traced out in a Lagrangian manner using t,he velocity field) indicate massive 
separation, as seen in Figs. 2 1 3 :  and 23. Simulated oil flow patterns shown in Figs. 24 and 25 indicates 
su.rface separation lines. These results have been obtained on a coarse grid and should be considered 
preliminary. A more detailed examination of the flow field is currently being obtained using l0Ox 64 x 6 4  
points on a CRAY-XMP with SSD memory. Comput.er graphics are presently being applied to study 
the topology of three-dimensional flow separation and the physics of the flow field in general. 

W 
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kd 
Figure 19. Surface Grid Distribution for 6-1 Ellipsoid 
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Figure 20. Grid Distribution for 6-1 Ellipsoid. 
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Figure 21. Particle Paths Showing Crossflow Separation. 

Figure 22. Particle Paths Sholving Crossflow Separation. 
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Figure 23. Particle Paths Showing Crossflow Separation. 

V I )  CLOSING 

General purpose centrally space differenced implicit finite difference codes, ARC2D and ARC3D, 
developed at NASA Ames run either in inviscid or viscous mode for steady or unsteady flow. They use 
general coordinate systems and can be run on any smoothly varying curvilinear meshes. The codes take 
advantage of vectorized computer processors and have been implemented for the Control Data 205 and 
the CRAY 1-S and X-MP. 

By using a series of established and simple procedures, a set of straightforward general purpose 
computer codes have been developed which are competitive with specialized codes. Changes in boundary 
conditions and numerical dissipation models have improved the accuracy of these codes over previous 
versions. Convergence characteristics, stability and robustness are greatly improved resulting in a set 
of excellent computational tools for application to  Euler and Navier-Stokes calculations. 

bad 

31 



Figure 24. Simulated Oilflow On Surface Showing Separation Line 

F.igure 25. Simulated Oilflow On Surface Showing Separation Line 
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APPEND I X 

The two-dimensional flux Jacobian matrices in generalized coordinates are A or B = 
e 

A,, = 

where 

- 
V 

- 

V 1 
~ I 

(A.3b) 



with 

T ,  = 

- 
and (r = p/(&a), P = l / ( & p a ) ,  B = Z,u+ Zyv,  and, for example, Zz = K z / d -  

Relations exist between Tc and Tq of the form 

where 

and 

(A.3c) 

(A.6a) 

(A.6b) 

It is interesting to  note that  the matrix is only a function of the metrics and not the flow variables. 
4 
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In three-dimensions the Jacobian matrices Â  or or e = 

^ ^  - 
with n = or q or 5 for A ,  B ,  or C respectively 

The viscous flux Jacobian is 

be9 1 J  (A.8a) 

where 

(A.8b) 

The eigensystem decomposition of the three-dimensional Jacobians have the form Â  = TCACTF1,  
aa' 
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= T&T[I, and e = TcAcTF1. The eigenvalues are 

The matrix T,; representing the left eigenvectors, is 

where 

(A . l l )  
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